You can support the development on the Github Sponsors page.


Tech > HAMSPH00


simulation of spherical pendulum
made by fnordomat
uploaded by fnordomat
added:
updated:
download cartridge
- CLICK TO PLAY -

0


A simple but hopefully physically accurate simulation of a perpetuum mobile^W^W spherical pendulum
see https://en.wikipedia.org/wiki/Spherical_pendulum#Hamiltonian_mechanics
not interactive, just a "screensaver"

Comments


halilo

halilo

Hamiltonian mechanics
Main article: Hamiltonian mechanics
The Hamiltonian is

{\displaystyle H=P_{\theta }{\dot {\theta }}+P_{\phi }{\dot {\phi }}-L}H=P_{\theta }{\dot {\theta }}+P_{\phi }{\dot {\phi }}-L
where conjugate momenta are

{\displaystyle P_{\theta }={\frac {\partial L}{\partial {\dot {\theta }}}}=ml^{2}\cdot {\dot {\theta }}}{\displaystyle P_{\theta }={\frac {\partial L}{\partial {\dot {\theta }}}}=ml^{2}\cdot {\dot {\theta }}}
and

{\displaystyle P_{\phi }={\frac {\partial L}{\partial {\dot {\phi }}}}=ml^{2}\sin ^{2}\!\theta \cdot {\dot {\phi }}}{\displaystyle P_{\phi }={\frac {\partial L}{\partial {\dot {\phi }}}}=ml^{2}\sin ^{2}\!\theta \cdot {\dot {\phi }}}.
In terms of coordinates and momenta it reads

{\displaystyle H=\underbrace {{\Big [}{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}{\Big ]}} _{T}+\underbrace {{\Big [}-mgl\cos \theta {\Big ]}} _{V}={P_{\theta }^{2} \over 2ml^{2}}+{P_{\phi }^{2} \over 2ml^{2}\sin ^{2}\theta }-mgl\cos \theta }{\displaystyle H=\underbrace {{\Big [}{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}{\Big ]}} _{T}+\underbrace {{\Big [}-mgl\cos \theta {\Big ]}} _{V}={P_{\theta }^{2} \over 2ml^{2}}+{P_{\phi }^{2} \over 2ml^{2}\sin ^{2}\theta }-mgl\cos \theta }

Hamilton's equations will give time evolution of coordinates and momenta in four first-order differential equations

{\displaystyle {\dot {\theta }}={P_{\theta } \over ml^{2}}}{\displaystyle {\dot {\theta }}={P_{\theta } \over ml^{2}}}
{\displaystyle {\dot {\phi }}={P_{\phi } \over ml^{2}\sin ^{2}\theta }}{\displaystyle {\dot {\phi }}={P_{\phi } \over ml^{2}\sin ^{2}\theta }}
{\displaystyle {\dot {P_{\theta }}}={P_{\phi }^{2} \over ml^{2}\sin ^{3}\theta }\cos \theta -mgl\sin \theta }{\displaystyle {\dot {P_{\theta }}}={P_{\phi }^{2} \over ml^{2}\sin ^{3}\theta }\cos \theta -mgl\sin \theta }
{\displaystyle {\dot {P_{\phi }}}=0}{\displaystyle {\dot {P_{\phi }}}=0}
Momentum {\displaystyle P_{\phi }}{\displaystyle P_{\phi }} is a constant of motion. That is a consequence of the rotational symmetry of the system around the vertical axis.[dubious – discuss]

Trajectory

Trajectory of a spherical pendulum.
Trajectory of the mass on the sphere can be obtained from the expression for the total energy

{\displaystyle E=\underbrace {{\Big [}{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}{\Big ]}} _{T}+\underbrace {{\Big [}-mgl\cos \theta {\Big ]}} _{V}}{\displaystyle E=\underbrace {{\Big [}{\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}ml^{2}\sin ^{2}\theta {\dot {\phi }}^{2}{\Big ]}} _{T}+\underbrace {{\Big [}-mgl\cos \theta {\Big ]}} _{V}}
by noting that the vertical component of angular momentum {\displaystyle L_{z}=ml^{2}\sin ^{2}\!\theta \,{\dot {\phi }}}{\displaystyle L_{z}=ml^{2}\sin ^{2}\!\theta \,{\dot {\phi }}} is a constant of motion, independent of time.[1]

Hence

{\displaystyle E={\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta }{\displaystyle E={\frac {1}{2}}ml^{2}{\dot {\theta }}^{2}+{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta }
{\displaystyle \left({\frac {d\theta }{dt}}\right)^{2}={\frac {2}{ml^{2}}}\left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]}{\displaystyle \left({\frac {d\theta }{dt}}\right)^{2}={\frac {2}{ml^{2}}}\left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]}
which leads to an elliptic integral of the first kind[1] for {\displaystyle \theta }\theta

{\displaystyle t(\theta )={\sqrt {{\tfrac {1}{2}}ml^{2}}}\int \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta }{\displaystyle t(\theta )={\sqrt {{\tfrac {1}{2}}ml^{2}}}\int \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta }
and an elliptic integral of the third kind for {\displaystyle \phi }\phi

{\displaystyle \phi (\theta )={\frac {L_{z}}{l{\sqrt {2m}}}}\int \sin ^{-2}\theta \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta }{\displaystyle \phi (\theta )={\frac {L_{z}}{l{\sqrt {2m}}}}\int \sin ^{-2}\theta \left[E-{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}+mgl\cos \theta \right]^{-{\frac {1}{2}}}\,d\theta }.
The angle {\displaystyle \theta }\theta lies between two circles of latitude,[1] where

{\displaystyle E>{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta }{\displaystyle E>{\frac {1}{2}}{\frac {L_{z}^{2}}{ml^{2}\sin ^{2}\theta }}-mgl\cos \theta }.
See also
Foucault pendulum
Conical pendulum
Newton's three laws of motion
Pendulum
Pendulum (mathematics)
Routhian mechanics
References
Landau, Lev Davidovich; Evgenii Mikhailovich Lifshitz (1976). Course of Theoretical Physics: Volume 1 Mechanics. Butterworth-Heinenann. pp. 33–34. ISBN 0750628960.
Further reading
Weinstein, Alexander (1942). "The spherical pendulum and complex integration". The American Mathematical Monthly. 49 (8): 521–523. doi:10.1080/00029890.1942.11991275.
Kohn, Walter (1946). "Countour integration in the theory of the spherical pendulum and the heavy symmetrical top". Transactions of the American Mathematical Society. 59 (1): 107–131. doi:10.2307/1990314. JSTOR 1990314.
Olsson, M. G. (1981). "Spherical pendulum revisited". American Journal of Physics. 49 (6): 531–534. Bibcode:1981AmJPh..49..531O. doi:10.1119/1.12666.
Horozov, Emil (1993). "On the isoenergetical non-degeneracy of the spherical pendulum". Physics Letters A. 173 (3): 279–283. Bibcode:1993PhLA..173..279H. doi:10.1016/0375-9601(93)90279-9.
Shiriaev, A. S.; Ludvigsen, H.; Egeland, O. (2004). "Swinging up the spherical pendulum via stabilizatio of its first integrals". Automatica. 40: 73–85. doi:10.1016/j.automatica.2003.07.009.
Essen, Hanno; Apazidis, Nicholas (2009). "Turning points of the spherical pendulum and the golden ration". European Journal of Physics. 30 (2): 427–432. Bibcode:2009EJPh...30..427E. doi:10.1088/0143-0807/30/2/021.
Dullin, Holger R. (2013). "Semi-global symplectic invariants of the spherical pendulum". Journal of Differential Equations. 254 (7): 2942–2963. doi:10.1016/j.jde.2013.01.018.
Categories: Pendulums
Navigation menu
Not logged in
Talk
Contributions
Create account
Log in
ArticleTalk
ReadEditView history
Search
Search Wikipedia
Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
Contribute
Help
Learn to edit
Community portal
Recent changes
Upload file
Tools
What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item
Print/export
Download as PDF
Printable version

Languages
Deutsch
Esperanto
Français
Polski
Shqip
Edit links
This page was last edited on 17 December 2021, at 04:56 (UTC).
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

halilo

halilo

® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ®

halilo

Ŕ⁜‱℃℉№™⟬‘‘„†‡‱✓⁇⁈‼⌀₫฿₪€₹₪$¥₺₫₩₩₡₱₨₨₨៛៛₾₥¢₨₥₾₸₼௹¤₶ℳℳ₧৲৻₠₰₻ƒʤʣɗĖêĚē

halilo

® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ® ®


fnordomat

what's your point?

halilo

smortness


halilo

wait
i can speak enderman!?

halilo

:| -:- :-: |:|


Post comment